Graphes

  • Voir la page en français

    In brief

  • Number of hours : 5 cours-TD, 5 TP
  • Code : N7EN10B

Objectives

The student must master the principal concepts and results of Graph Theory and is able to apply them to real life problems and situations. He can implement and test classical algorithms of graph theory, such as Euler's circuit, Disjkstra's shortest path, Welsh-Powell's coloring, etc.

Description

Chapter 1 : Definitions and basic concepts

Chapter 2 : Graph connexity

Chapter 3 : Euler and Hamilton graphs

Chapter 4 : Exploring graphs

Chapter 5 : Graph coloring and Planar graphs

 

Each chapter is studied in class and related exercices are proposed.

5 labs are dedicated to the project.

Bibliography

* Gondran, Michel, and Michel Minoux. Graphs and algorithms. Wiley, 1984

Needed prerequisite

Programming skills in ocaml

Session 1 ou session unique - Contrôle des connaissances

ModalitéNatureCoefficientRemarques
CC (contrôle continu) Oral/Ecrit70%Examen Graphes
CC (contrôle continu) Bureau d'Etudes30%BE-Graphes

Session 2 - Contrôle des connaissances

ModalitéNatureCoefficientRemarques
CC (contrôle continu) Oral/Ecrit70%Examen Graphes
CC (contrôle continu) Bureau d'Etudes30%BE-Graphes

Contact(s)

MORIN GÉRALDINE

Places

  • Toulouse

Contact

The National Institute of Electrical engineering, Electronics, Computer science,Fluid mechanics & Telecommunications and Networks

2, rue Charles Camichel - BP 7122
31071 Toulouse Cedex 7, France

+33 (0)5 34 32 20 00

Certifications

  • Logo MENESR
  • Logo UTFTMP
  • Logo INP
  • Logo INPT
  • Logo Mines télécoms
  • Logo CTI
  • Logo CDEFI
  • Logo midisup