Statistique exploratoire multi modèle

  • See this page in english

    En bref

  • Code : N9EN19A

Objectifs

-       With the explosion of big data problems statistical learning has become a very hot field. In this course, many linear and non-linear statistical methods are discussed and practiced. Teaching is resolutely focused on practice with R or Python practical works for each method (20% theory, 80% practice).

-       Students will be able to optimize each model to compare them and ultimately select the most efficient method on the available data.

Description

-       Lesson + practical work for each part :

Introduction : statistical learning, regression & classification – Linear models - GAM – Decision trees – Model aggregation methods (Bagging, Random forests, Boosting) – Support Vector Machines – Neural Networks & Deep Learning

Bibliographie

-       An introduction to statistical learning, G.James & al., Springer

-       The elements of statistical learning, T.Hastie & al., Springer

-       https://cran.r-project.org/

Conditions d'admission

-       R & Python, inferential statistics, gaussian linear model, logistic regression

Session 1 ou session unique - Contrôle des connaissances

ModalitéNatureCoefficientRemarques
CT (contrôle terminal) Bureau d'Etudes100%BE Statistique exploratoire multi mobile

Session 2 - Contrôle des connaissances

ModalitéNatureCoefficientRemarques
CT (contrôle terminal) Bureau d'Etudes100%BE Statistique exploratoire multi mobile

Contact(s)

LAVEAU PASCAL

Contactez l’ENSEEIHT

L’École Nationale Supérieure d'Électrotechnique, d'Électronique, d'Informatique, d'Hydraulique et des Télécommunications

2, rue Charles Camichel - BP 7122
31071 Toulouse Cedex 7, France

+33 (0)5 34 32 20 00

Certifications

  • Logo MENESR
  • Logo UTFTMP
  • Logo INP
  • Logo INPT
  • Logo Mines télécoms
  • Logo CTI
  • Logo CDEFI
  • Logo midisup