Probabilities
Objectives
The aim of this course is to enable the future engineer to build a mathematical model based on the observation of a random phenomenon and a collection of experimental or sampling data. This construction goes from the choice of model to its precise adjustment and its validation. This model must then allow a better understanding or analysis of the phenomenon and lead, if necessary, to decision-making or forecasts.
Description
1st course: Probability in infinite and uncountable spaces.
2nd course: Real random variables; basic concepts ; discrete distributions.
3rd course: Real random variables; probability density functions.
4th course: End of random variables; change of variable. Random vectors.
5th course: Correlation; marginal distributions; Independence. Change of variables. 6th course: Characteristic function. Convergences. Law of large numbers. 7th course: Complements; revisions. Tutorials
TD 1: Probability derivation.
TD 2: The discrete distributions.
TD 3: The continuous distributions.
TD 4: Bivariate change of variables.
TD 5: Characteristic function; Convergences. Practical work
TP 1 and 2: Initiation to Matlab for probabilities and statistics.
TP 3 and 4: Simulation of random variables.
Bibliography
Combrouze, A et Deyde, A. (1996) : Probabilités et statistiques. PUF.
Garel, B. (2002) : Modélisation probabiliste et statistique. Cépadues Editions.
Garel, B. (2018) : Modèles mathématiques du hasard. Ellipses.
Méléart S. (2010) : Introduction à la théorie et au calcul des probabilités. Ecole Polytechnique, Paris.
Session 1 ou session unique - Contrôle des connaissances
Modalité | Nature | Coefficient | Remarques |
---|---|---|---|
CT (contrôle terminal) | Oral/Ecrit | 100% | Probabilités - Examen |
Session 2 - Contrôle des connaissances
Modalité | Nature | Coefficient | Remarques |
---|---|---|---|
CT (contrôle terminal) | Oral/Ecrit | 100% | Probabilités - Examen |
Contact(s)
CHABERT MARIEPlaces
- Toulouse