Component
École Nationale Supérieure d'Électrotechnique d'Électronique d'Informatique d'Hydraulique et des Télécommunications
Objectives
Understand the principles of the principal component analysis, regression by least squares and classifiers that are not based on neural networks (Bayesian classification, support vector machines, regression trees and clustering methods).
Description
- Principal component analysis
- Least squares and regression
- Bayesian classification
- Support vector machines
- Decision trees
- Clustering
Pre-requisites
Probability bases, optimization with constraints, differentiation of quadratic forms, matrix diagonalization, SVD
Bibliography
- I. Jolliffe, Principal Component Analysis, Springer-Verlag, 2002.
- R. Duda, P. Hart and D. Stork, Pattern Classification, Wiley-Interscience, 2nd edition, Nov. 2000.
