• Component

    École Nationale Supérieure d'Électrotechnique d'Électronique d'Informatique d'Hydraulique et des Télécommunications

Objectives

Understand the principles of the principal component analysis, regression by least squares and classifiers that are not based on neural networks (Bayesian classification, support vector machines, regression trees and clustering methods).

Read more

Description

-      Principal component analysis

-      Least squares and regression

-      Bayesian classification

-      Support vector machines

-      Decision trees

-      Clustering

Read more

Pre-requisites

Probability bases, optimization with constraints, differentiation of quadratic forms, matrix diagonalization, SVD

Read more

Bibliography

  1. I. Jolliffe, Principal Component Analysis, Springer-Verlag, 2002.
  2. R. Duda, P. Hart and D. Stork, Pattern Classification, Wiley-Interscience, 2nd edition, Nov. 2000.
Read more