

Optoelectronics

Component

École Nationale Supérieure d'Électrotechnique d'Électronique d'Informatique d'Hydraulique et des Télécommunications

In brief

> Code: N8EE04B

> Open to exchange students: Yes

Presentation

Objectives

By the end of this course, students will be able to:

- Understand the fundamental principles of optical fiber communications and the physical properties of optical fibers (attenuation, bandwidth).
- Describe the operation and characteristics of light sources (PN junction LEDs, laser diodes) and photodetectors (photodiodes).
- Design and analyze amplification and filtering circuits for optical receivers, considering noise and bandwidth constraints.
- Evaluate the impact of noise in photodetection and propose solutions to optimize signal-to-noise ratio (SNR).
- Apply theoretical knowledge to practical scenarios in fiber optic communication systems.

Description

This course provides an introduction to optoelectronics, focusing on fiber optic communication systems. The main topics covered include:

Optical Fiber Fundamentals: Types of optical fibers, attenuation mechanisms, dispersion, and bandwidth limitations.

- **Light Sources**: Operation and characteristics of PN junction-based light sources (LEDs and laser diodes), including modulation and efficiency.
- Photodetectors: Principles of photodiodes (PIN, APD), responsivity, and noise mechanisms.
- Amplification and Filtering Electronics: Design of transimpedance amplifiers (TIAs), noise analysis, and filtering techniques for
 optical receivers.
- **Noise in Photodetection**: Sources of noise (shot noise, thermal noise, dark current), and strategies to minimize their impact on system performance.
- **System-Level Considerations**: Integration of components into fiber optic communication links, including budget calculations and performance optimization.

The course combines theoretical lectures, practical exercises, and laboratory sessions to reinforce concepts and develop handson skills.

Pre-requisites

- Basic knowledge of semiconductor physics and PN junctions.
- · Familiarity with analog electronics (amplifiers, filters, and noise analysis).
- Understanding of fundamental communication principles (modulation, signal transmission).

