

Vibrations sous écoulement

Component

École Nationale Supérieure d'Électrotechnique d'Électronique

In brief

> Code: N8EM06C

Presentation

Objectives

- · Know how to identify the mechanism causing a vibration problem of a structure placed in a flow.
- Knowing how to choose the acquisition and processing parameters to identify the modes of an aeroelastic system by spectral analysis.

Description

I. Physics of the interaction

- · Examples and industrial context, classification by dimensional analysis, aerodynamic complements.
- Vortex-induced vibration, lock-in
- Stability analysis, damping and added stiffness (galloping, divergence)
- · Aeroelastic transients, dynamic stall, hereditary damping
- · State formalism, modal analysis, antisymmetric stiffness coupling (flutter flexion-torsion of a wing).
- II. Experimental identification

- Periodic estimation of Welch, statistical properties
- Method of identification of fluidelastic coupling (direct or indirect)
- Filtering relations (Wiener-Lee), consistency function
- Practical application (TP) to spectral and correlation analysis "real time" of a flexible structure in a turbulent flow. Identification of a Movement Induced Vibration (MIV) coupling

